Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1975 J. Phys. A: Math. Gen. 81734
(http://iopscience.iop.org/0305-4470/8/11/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:03

Please note that terms and conditions apply.

Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures

I J Zucker
Department of Physics, University of Surrey, Guildford, Surrey, UK

Received 23 June 1975

Abstract

A method is given of evaluating Madelung constants for invariant cubic lattice complexes. It is shown that a linear combination of at most 8 lattice sums is sufficient to give the Madelung constant of all such lattices. In many cases this reduces to just 3 sums. The 8 sums suffice also to determine the Madelung constant for tetragonal lattices with axial ratio $\sqrt{ } 2$ or $\mathbf{2}$ and for orthorhombic lattices with lattice parameters in the ratio $1: \sqrt{2}: 2$. The method developed here is also applied to the evaluation of lattice sums arising from particles interacting with a general r^{-s} potential.

1. Introduction

The evaluation of Madelung constants α has been the subject of many studies. The names of Born (1921), Emersleben (1923) and Hund $(1925,1935)$ are associated with certain general approaches to this problem. Review articles by Waddington (1959) and Tosi (1964) give many references. Recently Sakamoto in a considerable amount of published and unpublished work from 1953 onwards, eg Sakamoto (1953, 1974), has presented a comprehensive study of electrostatic energies in lattices. Unfortunately much that he has published as well as his unpublished work is not easily accessible and whether some results given here are to be found in his work is not easy to discover. All these investigations refer to electrostatic interactions between particles. The purpose of this work is to systematize Hund's (1935) basic potential approach to the calculation of α and to generalize it to particles interacting with an r^{-s} potential. In particular a prescription will be given for evaluating α and other lattice sums for all structures forming invariant cubic lattice complexes (ICLC). Naor (1958), in discussing α for ICLC, showed that 17 lattice sums of which only 9 were independent, were sufficient to calculate α for all ICLC. He conjectured that these 9 sums were not only sufficient but necessary. Here it will be shown that only 8 of these 9 sums are independent. In most cases only 5 of these sums are required and indeed for many cubic crystals found in nature just 3 numbers in various linear combinations are sufficient to give α. The method used here will also enable α to be evaluated for certain tetragonal crystals.

2. The basic cubic potential of Hund and its generalization

Cubic structures are composed of interpenetrating simple cubic lattices (sc), generally of different lattice constant. For iclc these lattice constants will be the same. In an ICLC any lattice site may be taken as a fundamental origin ($0,0,0$). The particle at
this site will interact with particles on the various Sc sites whose origin lattice point with respect to $(0,0,0)$ has coordinates (x, y, z) where $x, y, z \leqslant \frac{1}{2}$. Such a lattice is said to be based on (x, y, z) and designated $\operatorname{sc}(x, y, z)$. If the particles interact with an r^{-s} potential, the generalized Hund potential $\psi(x, y, z: 2 s)$ is defined as the lattice sum obtained by summing the interaction of the fundamental origin particle with the particles on the sc based on (x, y, z). Thus
$\psi=\psi(x, y, z)=\psi(x, y, z: 2 s)=\sum_{m, n, p} \sum_{-\infty}^{\infty} \sum_{-\infty}\left[(n-x)^{2}+(m-y)^{2}+(p-z)^{2}\right]^{-s}$.
The sums are over all integer values of $m, n, p . \psi(0,0,0)$ is known as the self-potential and in its evaluation the interaction of the $(0,0,0)$ particle with itself is excluded, ie in (2.1) we exclude the term $m=n=p=0$. Hund (1935) and Sakamoto (unpublished) discovered identities amongst $\psi(x, y, z)$ for varying x, y, z and $s=\frac{1}{2}$. Here general relations for arbitrary s will be obtained.

For ICLC, (x, y, z) can only take values which are multiples of $\frac{1}{8}$, and they must occur in certain combinations. Naor (1958) found these 17 possible combinations for cubic lattices and the related combination of Hund potentials. They are given in table 1.

3. The representation of ψ by $\boldsymbol{\theta}$-functions

The modified Mellin transform M_{s} is defined as follows:

$$
\begin{equation*}
\Gamma(s) M_{s}[f]=\int_{0}^{\infty} t^{s-1} f \mathrm{~d} t \tag{3.1}
\end{equation*}
$$

It immediately follows that

$$
\begin{equation*}
\psi(x, y, z: 2 s)=M_{s}\left(\sum_{-\infty}^{\infty} q^{(n-x)^{2}} \sum_{-\infty}^{\infty} q^{(n-y)^{2}} \sum_{-\infty}^{\infty} q^{(p-z)^{2}}\right), \quad q=e^{-t} . \tag{3.2}
\end{equation*}
$$

The transformed function is much simpler to handle since the triple sum in (2.1) is split into the product of three single sums. If (x, y, z) are all multiples of $\frac{1}{4}, \psi(x, y, z)$ may be expressed in terms of well known Jacobian θ-functions. These, as defined by Whittaker and Watson (1958), are

$$
\begin{aligned}
& \theta_{2}=\sum_{-\infty}^{\infty} q^{(n-1 / 2)^{2}}=2 q^{1 / 4}\left(1+q^{2}+q^{6}+q^{12}+q^{20}+q^{30} \ldots\right) \\
& \theta_{3}=\sum_{-\infty}^{\infty} q^{n^{2}}=1+2 q+2 q^{4}+2 q^{9} \ldots \\
& \theta_{4}=\sum_{-\infty}^{\infty}(-1)^{n} q^{n^{2}}=1-2 q+2 q^{4}-2 q^{9} \cdots \\
& \theta_{1}^{\prime}=2 \sum_{0}^{\infty}(-1)^{n}(2 n+1) q^{(n+1 / 2)^{2}}=2 q^{1 / 4}\left(1-3 q^{2}+5 q^{6} \ldots\right)
\end{aligned}
$$

Table 1. Simple cubic potentials: $k=2^{2 s-3}$

Naor symbol	Hund potential			
A	$\psi($ function representation			

In fact only θ_{2} and θ_{3} are required since

$$
\begin{array}{ll}
x=0: & \sum_{-\infty}^{\infty} q^{n^{2}}=\theta_{3} ; \quad x=\frac{1}{2}: \quad \sum_{-\infty}^{\infty} q^{(n-1 / 2)^{2}}=\theta_{2} ; \\
x=\frac{1}{4}: \quad & \sum_{-\infty}^{\infty} q^{(n-1 / 4)^{2}}=\frac{1}{2} \theta_{2}\left(q^{1 / 4}\right) . \tag{3.3}
\end{array}
$$

To handle multiples of $\frac{1}{8}$, an additional function θ_{5} is required. This is given by $\theta_{5}=2 \sum_{-\infty}^{\infty}(-1)^{n} q^{(2 n-1 / 2)^{2}}=2 q^{1 / 4}\left(1-q^{2}-q^{6}+q^{12}+q^{20}-q^{30}-q^{42} \ldots\right)$,
whence

$$
\begin{array}{ll}
x=\frac{1}{8}, & \sum_{-\infty}^{\infty} q^{(n-1 / 8)^{2}}=\frac{1}{4}\left(\theta_{2}\left(q^{1 / 16}\right)+\theta_{5}\left(q^{1 / 16}\right)\right) \tag{3.5}\\
x=\frac{3}{8}, & \sum_{-\infty}^{\infty} q^{(n-3 / 8)^{2}}=\frac{1}{4}\left(\theta_{2}\left(q^{1 / 16}\right)-\theta_{5}\left(q^{1 / 16}\right)\right) .
\end{array}
$$

(3.3) and (3.5) together with the following property of Mellin transforms,

$$
\begin{equation*}
M_{s} f\left[q^{k}\right]=k^{-s} M_{s} f[q] \tag{3.6}
\end{equation*}
$$

allow all of Naor's combinations of ψ to be written in the forms given in table 1.
Now many identities hold amongst combinations of $\theta_{2}-\theta_{5}$. Ones used here and found in standard textbooks are

$$
\begin{align*}
& \theta_{3}+\theta_{4}=2 \theta_{3}\left(q^{4}\right) ; \theta_{3}-\theta_{4}=2 \theta_{2}\left(q^{4}\right) ; \quad \theta_{3}=\theta_{3}\left(q^{4}\right)+\theta_{2}\left(q^{4}\right) \\
& \theta_{3} \theta_{4}=\theta_{4}^{2}\left(q^{2}\right) ; \quad 2 \theta_{2} \theta_{3}=\theta_{2}^{2}\left(q^{1 / 2}\right) ; \quad \theta_{1}^{\prime}=\theta_{2} \theta_{3} \theta_{4} . \tag{3.7a-f}
\end{align*}
$$

To these are added

$$
\begin{equation*}
\theta_{5}^{2}=2 \theta_{2}\left(q^{2}\right) \theta_{4}\left(q^{2}\right) ; \quad \theta_{2}\left(\theta_{5}=2 \theta_{2}\left(q^{2}\right) \theta_{4}\left(q^{4}\right)\right. \tag{3.8a,b}
\end{equation*}
$$

In appendix 1 some properties of θ_{5} are given and the results (3.8) deduced. The manipulation of these identities enables us to find relations amongst the $\psi(x, y, z)$. For example, $\psi(0,0,0)=M_{s}\left[\theta_{3}^{3}-1\right]$, but since

$$
\begin{aligned}
& \theta_{3}=\theta_{3}\left(q^{4}\right)+\theta_{2}\left(q^{4}\right) \\
& \begin{aligned}
\psi(0,0,0) & =M_{s}\left[\left(\theta_{3}\left(q^{4}\right)+\theta_{2}\left(q^{4}\right)\right)^{3}-1\right] \\
\quad & =2^{-2 s}\left(\psi(0,0,0)+3 \psi\left(0,0, \frac{1}{2}\right)+3 \psi\left(0, \frac{1}{2}, \frac{1}{2}\right)+\psi\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right)
\end{aligned}
\end{aligned}
$$

or when $s=\frac{1}{2}$,

$$
\begin{equation*}
\psi(0,0,0: 1)=3 \psi\left(0,0, \frac{1}{2}: 1\right)+3 \psi\left(0, \frac{1}{2}, \frac{1}{2}: 1\right)+\psi\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}: 1\right) \tag{3.9}
\end{equation*}
$$

which is one of Hund's identities. Eventually all of Naor's (1958) 17 combinations can be reduced to combinations of the following 8 lattice sums. These are

$$
\begin{aligned}
& b=b(2 s)=\sum^{\prime}(-1)^{m}\left(m^{2}+n^{2}+p^{2}\right)^{-s}=M_{s}\left[\theta_{3}^{2} \theta_{4}-1\right] \\
& c=c(2 s)=\sum^{\prime}(-1)^{m+n}\left(m^{2}+n^{2}+p^{2}\right)^{-s}=M_{s}\left[\theta_{3} \theta_{4}^{2}-1\right] \\
& d=d(2 s)=\sum^{\prime}(-1)^{m+n+p}\left(m^{2}+n^{2}+p^{2}\right)^{-s}=M_{s}\left[\theta_{4}^{3}-1\right] \\
& e=e(2 s)=\sum(-1)^{m}\left[m^{2}+\left(n-\frac{1}{2}\right)^{2}+\left(p-\frac{1}{2}\right)^{2}\right]^{-s}=M_{s}\left[\theta_{4} \theta_{2}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& f=f(2 s)=\sum(-1)^{m+n}\left[m^{2}+n^{2}+\left(p-\frac{1}{2}\right)^{2}\right]^{-s}=M_{s}\left[\theta_{4}^{2} \theta_{2}\right] \\
& g=g(2 s)=8 \sum(-1)^{m+n+p}\left[\left(2 m-\frac{1}{2}\right)^{2}+\left(2 n-\frac{1}{2}\right)^{2}+\left(2 p-\frac{1}{2}\right)^{2}\right]^{-s}=M_{s}\left[\theta_{5}^{3}\right] \\
& h=h(2 s)=4 \sum(-1)^{n+p}\left[m^{2}+\left(2 m-\frac{1}{2}\right)^{2}+\left(2 p-\frac{1}{2}\right)^{2}\right]^{-s}=M_{s}\left[\theta_{3} \theta_{5}^{2}\right] \\
& j=j(2 s)=4 \sum(-1)^{m+n+p}\left[m^{2}+\left(2 n-\frac{1}{2}\right)^{2}+\left(2 p-\frac{1}{2}\right)^{2}\right]^{-s}=M_{s}\left[\theta_{4} \theta_{5}^{2}\right] .
\end{aligned}
$$

For convenience we append the self-potential sum

$$
\begin{equation*}
a=a(2 s)=\sum^{\prime}\left(m^{2}+n^{2}+p^{2}\right)^{-s}=M_{s-}\left[\theta_{3}^{3}-1\right] \tag{3.10a}
\end{equation*}
$$

but this is expressible in terms of b, c and d. These sums have been tabulated in table 4 for $s=\frac{1}{2}\left(\frac{1}{2}\right) 8$ to 10 decimal places. In (3.10) all the sums are over all integer values of m, n, p, except ($3.10 a-d$) in which the case $m=n=p=0$ is excluded. All the sums except $a(2 s)$ converge for $s>0 . a(2 s)$ has a simple pole at $s=\frac{3}{2}$ but just as the function $\zeta(s)$ represented by the sum $\Sigma_{1}^{\infty} n^{-s}$ for $s>0$ has a simple pole at $s=0$, yet is easily defined for $s<0$, so there is no difficulty in defining $a(2 s)$ for $s<\frac{3}{2}$. For

$$
\begin{aligned}
a(2 s) & =M_{s}\left[\theta_{3}^{3}-1\right]=M_{s}\left[\left[\frac{1}{2}\left(\theta_{3}\left(q^{1 / 4}\right)+\theta_{4}\left(q^{1 / 4}\right)\right)\right]^{3}-1\right] \\
& =2^{2 s-3} M_{s}\left[\theta_{3}^{3}+3 \theta_{3}^{2} \theta_{4}+3 \theta_{3} \theta_{4}+\theta_{4}^{3}-8\right] .
\end{aligned}
$$

Therefore

$$
a(2 s)=2^{2 s-3}(a(2 s)+3 b(2 s)+3 c(2 s)+d(2 s))
$$

and in particular

$$
\begin{equation*}
a(1)=b(1)+c(1)+\frac{1}{3} d(1) . \tag{3.11}
\end{equation*}
$$

Since all the sums on the right-hand side of (3.11) converge for $s>0, a(1)$ may be evaluated. In a similar way all of Naor's (1958) grouping may be evaluated in terms of $(3.10 a-j)$. The results are given in table 1 for general s together with values for $s=\frac{1}{2}$ in terms of $b(1)-j(1)$. In appendix 2 we give in detail the evaluation of N and P. Naor (1958) thought them to be independent, but in appendix 2 it is shown that they differ by a constant which for $s=\frac{1}{2}$ is equal to $2^{1 / 2}$.

In many ICLC the sc based on $(x, y, z),\left(x, y+\frac{1}{2}, z+\frac{1}{2}\right),\left(x+\frac{1}{2}, y, z+\frac{1}{2}\right)$ and $\left(x+\frac{1}{2}, y+\frac{1}{2}, z\right)$ are often simultaneously occupied by the same particle. These four Sc form the facecentred cubic (FCC) structure, and when this occurs we have an FCC lattice based on (x, y, z) or FCC (x, y, z). Knowledge of the potentials for such groups facilitates many calculations, and in table 2 the potentials for $\operatorname{FCC}(x, y, z)$ based on a few selected lattice sites have been given. It will be observed in both tables 1 and 2 that if (x, y, z) are either

Table 2. FCC potentials.

Lattice base	Values for general s	Value for $s=\frac{1}{2}$
$(0,0,0)$	$2^{2 s-1}(a+d)$	$a(1)+d(1)$
$\left(0,0, \frac{1}{2}\right)$	$2^{2 s-1}(a-d)$	$a(1)-d(1)$
$\left(0, \frac{1}{2}, \frac{1}{2}\right)$	$2^{2 s-1}(a+d)$	$a(1)+d(1)$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$2^{2 s-1}(a-d)$	$a(1)-d(1)$
$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	$2^{4 s-4}(a-3 b+3 c-d)$	$(3 c(1)-a(1)) / 2$

0 or $\frac{1}{2}$ or all $\frac{1}{4}$ then only three independent constants, which we will choose to be b, c and d, are required to specify lattice sums. The majority of ionic crystals usually met with fall into these categories.

4. Prescription for evaluating Madelung constants

To find α for a given crystal, the total Hund potential for every ion making up the neutral complex in the crystal must be evaluated. The number of charges and the sign of the ions interacting have to be taken into account. The sum of all the Hund potentials divided by 2 then gives α. The following examples of increasing complexity illustrate the method.
(i) $\mathrm{Na}^{+} \mathrm{Cl}^{-}$

$$
\begin{aligned}
& \mathrm{Na}^{+} \text {at }(0,0,0) \rightarrow \mathrm{Na}^{+}=\mathrm{FCC}(0,0,0) ; \quad \mathrm{Cl}^{-}=\mathrm{FCC}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) . \\
& \psi\left(\mathrm{Na}^{+}\right)=a(1)+d(1)-(a(1)-d(1))=2 d(1) \\
& \mathrm{Cl}^{-} \text {at }(0,0,0) \rightarrow \mathrm{Cl}^{-}=\mathrm{FCC}(0,0,0) ; \quad \mathrm{Na}^{+}=\mathrm{FCC}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) . \\
& \psi\left(\mathrm{Cl}^{-}\right)=a(1)+d(1)-(a(1)-d(1))=2 d(1) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
x\left(\mathrm{Na}^{+} \mathrm{Cl}^{-}\right)=\frac{1}{2}\left(\psi\left(\mathrm{Na}^{+}\right)+\psi\left(\mathrm{Cl}^{-}\right)\right)=2 d(1) . \tag{4.1}
\end{equation*}
$$

(ii) $\mathrm{Ca}^{2+} \mathrm{F}_{2}^{-}$

$$
\begin{gathered}
\mathrm{Ca}^{2+} \text { at }(0,0,0) \rightarrow \mathrm{Ca}^{2+}=\mathrm{FCC}(0,0,0) ; \quad \mathrm{F}^{-}=\mathrm{FCC}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) ; \quad \mathrm{F}^{-}=\mathrm{FCC}\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right) \\
\psi\left(\mathrm{Ca}^{2+}\right)=4(a(1)+d(1))-(3 c(1)-a(1))-(3 c(1)-a(1)) \\
\mathrm{F}^{-} \text {at }(0,0,0) \rightarrow \mathrm{F}^{-}=\mathrm{FCC}(0,0,0) ; \quad \mathrm{F}^{-}=\mathrm{FCC}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) ; \quad \mathrm{Ca}^{2+}=\mathrm{FCC}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \\
\psi\left(\mathrm{F}^{-}\right)=a(1)+d(1)+a(1)-d(1)-(3 c(1)-a(1)) .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\alpha\left(\mathrm{Ca}^{2+} \mathrm{F}_{2}^{-}\right)=\frac{1}{2}\left(\psi\left(\mathrm{Ca}^{2+}\right)+2 \psi\left(\mathrm{~F}^{-}\right)\right)=6 a(1)-6 c(1)+2 d(1)=6 b(1)+4 d(1) . \tag{4.2}
\end{equation*}
$$

(iii) Perovskites : general formula $\mathrm{A}^{m+} \mathrm{B}^{3 n-m} \mathrm{X}_{3}^{n-}$

$$
\begin{gathered}
\mathrm{A}^{m+} \text { at }(0,0,0) \rightarrow \mathrm{A}^{m+}=\operatorname{sc}(0,0,0) ; \quad \mathrm{B}^{3 n-m}=\operatorname{sc}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \\
3 \mathrm{X}^{n-}=\operatorname{sc}\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right) . \\
\psi\left(\mathrm{A}^{m+}\right)=m^{2} a(1)+m(3 n-m)(3 c(1)-a(1)) / 2-m n d(1) . \\
\mathrm{B}^{3 n-m} \text { at }(0,0,0) \rightarrow \mathrm{B}^{3 n-m}=\operatorname{sc}(0,0,0) \\
3 \mathrm{X}^{n-}=\operatorname{sc}\left(0,0, \frac{1}{2}\right),\left(0, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0,0\right) \\
\mathrm{A}^{m+}=\operatorname{sc}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) . \\
\psi\left(\mathrm{B}^{3 n-m}\right)=(3 n-m)^{2} a(1)-n(3 n-m)(3 b(1)-d(1)) / 2+m(3 n-m)(3 c(1)-a(1)) / 2 . \\
\mathrm{X}^{n-} \text { at }(0,0,0) \rightarrow \mathrm{X}^{n-}=\operatorname{sc}(0,0,0) ; \quad 2 \mathrm{X}^{n-}=\operatorname{sc}\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right) \\
\mathrm{A}^{m+}=\operatorname{sc}\left(\frac{1}{2}, \frac{1}{2}, 0\right) ; \quad \mathrm{B}^{3 n+m}=\operatorname{sc}\left(0,0, \frac{1}{2}\right) . \\
\psi\left(\mathrm{X}^{n-}\right)=n^{2} a(1)+2 n^{2} d(1) / 3-m n d(1) / 3-n(3 n-m)(3 b(1)-c(1)) / 2 .
\end{gathered}
$$

$$
\alpha\left(\mathrm{A}^{m+} \mathrm{B}^{3 n-m} \mathrm{X}_{3}^{n-}\right)=\frac{1}{2}\left(\psi\left(\mathrm{~A}^{m+}\right)+\psi\left(\mathrm{B}^{3 n-m}\right)+3 \psi\left(\mathrm{X}^{-}\right)\right) .
$$

After some algebra we have

$$
\begin{equation*}
\alpha\left(\mathrm{A}^{m+} \mathrm{B}^{3 n-m} \mathrm{X}_{3}^{n-}\right)=\frac{1}{2}\left[3(n-m)^{2} b(1)+12 n^{2} c(1)+(3 n-m)^{2} d(1)\right] \tag{4.3}
\end{equation*}
$$

For example, for

$$
\mathrm{Ba}^{2+} \mathrm{Ti}^{4+} \mathrm{O}_{3}^{2-}, n=m=2
$$

Therefore

$$
\alpha\left(\mathrm{BaTiO}_{3}\right)=24 c(1)+8 d(1) .
$$

Sakamoto (1958) has given a formula similar to (4.3) but in terms of the Born (1921) potentials Π. In table 5 a short list is given of α for some ionic crystals in terms of $b(1)$, $c(1)$ and $d(1)$ only. The numerical values given are all in terms of the basic cube side. The various linear relations discovered amongst α for various ionic crystals by several authors such as Fumi and Tosi (1957), Benson and Zeggeren (1957), Templeton (1955) and several others are easily deduced from table 5. Sakamoto (1958) gives a similar tabulation but in terms of Born potentials. Takahasi and Sakamoto (1960) show how to convert from Π to ψ and vice versa. They also tabulate numerical values of $\psi(x, y, z: 1)$ accurate to at least four decimal places for all values of x, y, z in multiples of $\frac{1}{24}$ from zero to $\frac{1}{2}$. There are 455 such terms many of which will be interdependent, but no systematic study of these relations has been carried out. From their table, α for quasicubic lattices of moderate complexity may be evaluated.

5. Tetragonal structures and other lattice sums

Tetragonal structures have a square base but a variable third lattice parameter. The ratio of this to that of one of the base lattice parameters is called the axial ratio (AR). If AR takes either the value $\sqrt{2}$ or 2 the potentials involved in their θ-function representation will contain θ-functions of arguments q^{2} and q^{4}. By manipulation of relations (3.7) and (3.8) all such potentials may be expressed in terms of $a(2 s)-e(2 s)$ if x, y, z are zero or $\frac{1}{2}$. All such tetragonal potentials have been listed in table 3. A calculation was carried

Table 3. Tetragonal potentials : $k=2^{2 s-3} ; l=2^{s-2}$

AR	Lattice base	θ-representation	Value for general s	Value for $s=\frac{1}{2}$
$\sqrt{2} 2$	$(0,0,0)$	$\theta_{3}^{2} \theta_{3}\left(q^{2}\right)$	$l(a+b+c+d)$	$2^{-1 / 2}(3 b(1)+3 c(1)+2 d(1)) / 3$
	$\left(0,0, \frac{1}{2}\right)$	$\theta_{3}^{2} \theta_{2}\left(q^{2}\right)$	$l(a-b+c-d)$	$2^{-1 / 2}(3 c(1)-d(1)) / 3$
	$\left(0, \frac{1}{2}, 0\right)$	$\theta_{3} \theta_{2} \theta_{3}\left(q^{2}\right)$	$k l(a-b-c+d)+l e$	$2^{-3 / 2}(d(1)+3 e(1)) / 3$
	$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	$\theta_{2}^{2} \theta_{3}\left(q^{2}\right)$	$l(a+b-c-d)$	$2^{-1 / 2}(3 b(1)-d(1)) / 3$
	$\left(\frac{1}{2}, 0, \frac{1}{2}\right)$	$\theta_{2} \theta_{3} \theta_{2}\left(q^{2}\right)$	$k l(a-b-c+d)-l e$	$2^{-3 / 2}(d(1)-3 e(1)) / 3$
	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$\theta_{2}^{2} \theta_{2}\left(q^{2}\right)$	$l(a-b-c+d)$	$2^{1 / 2} d(1) / 3$
	$(0,0,0)$	$\theta_{3}^{2} \theta_{3}\left(q^{4}\right)$	$(a+b) / 2$	$(6 b(1)+3 c(1)+d(1)) / 6$
	$\left(0,0, \frac{1}{2}\right)$	$\theta_{3}^{2} \theta_{2}\left(q^{4}\right)$	$(a-b) / 2$	$(3 c(1)+d(1)) / 6$
	$\left(0, \frac{1}{2}, 0\right)$	$\theta_{3} \theta_{2} \theta_{3}\left(q^{4}\right)$	$k(a+b-c-d) / 2+2^{2 s} \beta(2 s-1)$	$(3 b(1)-d(1)+12) / 12$
	$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$	$\theta_{2}^{2} \theta_{3}\left(q^{4}\right)$	$[k(a-b-c+d)+e] / 2$	$(d(1)+3 e(1)) / 6$
	$\left(0, \frac{1}{2}, \frac{1}{2}\right)$	$\theta_{3} \theta_{2} \theta_{2}\left(q^{4}\right)$	$k(a+b-c-d) / 2-2^{2 s} \beta(2 s-1)$	$(3 b(1)-d(1)-12) / 12$
	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$\theta_{2}^{2} \theta_{2}\left(q^{4}\right)$	$[k(a-b-c+d)-e] / 2$	$(d(1)-3 e(1)) / 6$

out for the structure $\mathrm{A}^{+} \mathrm{B}^{-}$, with $\mathrm{A}^{+}=\mathrm{Sc}(0,0,0)$ and $\mathrm{B}^{-}=\mathrm{SC}\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ of which CaWO_{4} is a physical example. This structure was considered by Hoppe (1956). For the three cases of $A R=1, \sqrt{2}$ and 2 , the results obtained here were

$$
\begin{array}{ll}
\mathrm{AR}=1 & \alpha\left(\mathrm{~A}^{+} \mathrm{B}^{-}\right)=b(1)+c(1)=2.254776(1.594367) \\
\mathrm{AR}=\sqrt{2} & \alpha\left(\mathrm{~A}^{+} \mathrm{B}^{-}\right)=2^{-1 / 2}(c(1)+d(1))=2.282508(1.613977) \\
\mathrm{AR}=2 & \alpha\left(\mathrm{~A}^{+} \mathrm{B}^{-}\right)=(2 b(1)+c(1)-e(1)) / 2=2.284666(1.615503) \tag{5.1}
\end{array}
$$

The figures in brackets are the values of α given in terms of the closest anion-cation distance. The first two agree with the values given by Hoppe (1956), but he estimated the value for $A R=2$ by extrapolation to be approximately 1.623 . It is seen here that it can be directly calculated and is smaller than Hoppe's value. Orthorhombic lattices with lattice parameters in the ratio $1: \sqrt{ } 2: 2$ can also have all their potentials written in terms of $a(2 s)-j(2 s)$ for x, y, z either zero or $\frac{1}{2}$, but there appears to be no physical example of such an ionic crystal.

There is no difficulty in using table 1 to evaluate other lattice sums. For example the sums found by Lennard-Jones and Ingham (1925) for r^{-s} potentials for the SC, BCC and FCC lattices made up of one kind of particle, are easily expressed in terms of $a(2 s)$ etc. Thus
$\mathrm{SC}(2 s)=a(2 s) ; \quad \mathrm{BCC}(2 s)=2^{2 s-2}(a(2 s)+3 c(2 s)) ; \quad \mathrm{FCC}(2 s)=2^{2 s-1}(a(2 s)+d(2 s))$.
Other lattice sums may be written in terms of $a(2 s)-j(2 s)$ or in terms of the cubic lattice sums just given. For example, the diamond (D) lattice is represented by $\operatorname{FCC}(0,0,0)$ plus $\operatorname{FCC}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. From table 2 it can immediately be shown that

$$
\begin{equation*}
D(2 s)=2^{2 s-1}(a+d)+2^{4 s-4}(a-3 b+3 c-d) . \tag{5.2}
\end{equation*}
$$

Table 4. Lattice sums : $N \times 10^{n}$ where n is figure in brackets

s	$a(2 s)$	$b(2 s)$	$c(2 s)$
0.5	$-2.8372974794(0)$	$-7.7438614142(-1)$	$-1.4803898065(0)$
1.0	$-8.913632917(0)$	$-3.013802247(-1)$	$-1.8300453641(0)$
1.5	∞	$2.2228710876(-1)$	$-2.0461936439(0)$
2.0	$1.653231596(1)$	$6.8922257409(-1)$	$-2.1568872986(0)$
2.5	$1.037752483(1)$	$1.0619823625(0)$	$-2.1968298536(0)$
3.0	$8.401920546(0)$	$1.3411086694(0)$	$-2.1955219241(0)$
3.5	$7.467057780(0)$	$1.5422045834(0)$	$-2.1738503493(0)$
4.0	$6.945807926(0)$	$1.6837514910(0)$	$-2.1448133764(0)$
4.5	$6.628859200(0)$	$1.7820445621(0)$	$-2.1155844408(0)$
5.0	$6.426119101(0)$	$1.8498105369(0)$	$-2.0895601364(0)$
5.5	$6.292294498(0)$	$1.8963845503(0)$	$-2.0679279901(0)$
6.0	$6.202149043(0)$	$1.9283773751(0)$	$-2.0507132697(0)$
6.5	$6.140599581(0)$	$1.9503780885(0)$	$-2.0374137084(0)$
7.0	$6.098184126(0)$	$1.9655380752(0)$	$-2.0273527819(0)$
7.5	$6.068764295(0)$	$1.9760103762(0)$	$-2.0198580752(0)$
8.0	$6.048263469(0)$	$1.9832637191(0)$	$-2.0143388512(0)$

Table 4.-continued

s	$d(2 s)$	$e(2 s)$	$f(2 s)$
0.5	-1.7475645946 (0)	1.5401709012 (0)	1.3196705870 (0)
1.0	-2.51935 61521 (0)	4.1458674219 (0)	4.8385895905 (0)
1.5	-3.23862 $47661(0)$	7.893704872 (0)	1.2568251129 (1)
2.0	$-3.8631638072(0)$	1.3054752185 (1)	2.8477747226 (1)
2.5	-4.37860 $11499(0)$	2.0132691063 (1)	6.0522064903 (1)
3.0	-4.78844 37139 (0)	2.9906494892 (1)	1.2465784291 (2)
3.5	-5.1054293720(0)	4.3507844901 (1)	$2 \cdot 5284972479$ (2)
4.0	-5.34556 57733 (0)	6.2547665025 (1)	5.0907147682 (2)
4.5	-5.52466 36380 (0)	8.9305752590 (1)	1.0213048420 (3)
5.0	$-5.6566662484(0)$	1.2700438916 (2)	2.0455377585 (3)
5.5	-5.7530849044 (0)	1.8019768497 (2)	4.0937626666 (3)
6.0	-5.82302 77889 (0)	2.5532313378 (2)	8.1899751417 (3)
6.5	-5.8734960409 (0)	3.6148194853 (2)	1.6382172875 (4)
7.0	-5.90976 23766 (0)	$5 \cdot 1154270695$ (2)	3.2766354948 (4)
7.5	-5.93573 $95661(0)$	7.2370214795 (2)	6.5534521329 (4)
8.0	-5.95429 97599 (0)	1.0236924529 (3)	1.3107067253 (5)
s	$g(2 s)$	$h(2 s)$	$j(2 s)$
0.5	2.5335574044 (0)	3.634989014 (0)	1.2858465498 (0)
1.0	5.6281494825 (0)	7.7294890464 (0)	3.6898829776 (0)
1.5	8.7850400797 (0)	1.2163847976 (1)	7.3479876218 (0)
2.0	1.1857062518 (1)	1.7414440838 (1)	1.2517226760 (1)
2.5	1.4885926393 (1)	2.4235087473 (1)	1.9662159451 (1)
3.0	1.7985164284 (1)	3.3588428415 (1)	2.9525897876 (1)
3.5	$2 \cdot 1283071340$ (1)	4.6717592062 (1)	4.3216738240 (1)
4.0	2.4902898412 (1)	6.5293708145 (1)	6.2333952840 (1)
4.5	$2 \cdot 8960408839$ (1)	9.1625607686 (1)	8.9153618774 (1)
5.0	3.3567795759 (1)	1.2894706095 (2)	1.2689861363 (2)
5.5	3.8839124460 (1)	1.8181430446 (2)	1.8012547440 (2)
6.0	4.4895602845 (1)	2.5666225287 (2)	2.5527454010 (2)
6.5	$5 \cdot 1870317651$ (1)	3.6258741613 (2)	3.6144961780 (2)
7.0	5.9912550183 (1)	$5.1245294757(2)$	$5 \cdot 1152139126$ (2)
7.5	6.9191909161 (1)	7.2445017880 (2)	7.2368819704 (2)
8.0	7.9902518812 (1)	1.0243062668 (3)	1.0236833762 (3)

Table 5. α for some ionic crystals

Crystal	$b(1)$	$c(1)$	$d(1)$	a
NaCl			2	3.49512919
CsCl	$\frac{3}{2}$		$\frac{1}{2}$	2.03536151
ZnS	$\frac{3}{2}$		$\frac{3}{2}$	3.782926104
CaF_{2}	6		4	11.636575227
$\mathrm{Cu}_{2} \mathrm{O}$	3	3	2	10.259457033
KZnF_{3}		6	2	12.37746803
LaAlO_{3}	$\frac{3}{2}$	24	$\frac{9}{2}$	44.55497524
ReO_{3}	6	24	18	71.63183526
BaTiO_{3}		24	8	49.50987213
NaTaO_{3}	$\frac{3}{2}$	24	$\frac{25}{2}$	58.53549203
ScF_{3}	$\frac{3}{2}$	6	$\frac{9}{2}$	17.90795873
YOF_{3}	$\frac{27}{2}$		$\frac{19}{2}$	27.05607657
BiF_{3}	6		10	22.12196279
BaLiF_{3}	$\frac{3}{2}$	6	$\frac{1}{2}$	10.917700035

Using the result that $a(2 s)=2^{2 s-3}(a+3 b+3 c+d)$, (5.2) may be rewritten in a number of ways of which the following are particularly simple:

$$
\begin{equation*}
D(2 s)=\mathrm{FCC}(2 s)+2^{2 s-1}(\mathrm{BCC}(2 s)-\mathrm{SC}(2 s))=2^{2 s-1}(\mathrm{BCC}(2 s)+d(2 s)) \tag{5.3}
\end{equation*}
$$

Similar formulae can be obtained for other lattices.

Acknowledgments

Many thanks are due to Joan Hilton for the computation of the lattice sums in this work. We are grateful to Professor Yosio Sakamoto for some most helpful comments and for correcting some errors in the original manuscript.

Appendix 1. Some properties of $\boldsymbol{\theta}_{5}$

Though the θ-functions have been most useful here expressed as infinite series it is often simpler to find many of their interrelated properties by using their representations as infinite products. If in the usual notation

$$
\begin{gathered}
Q_{0}=\prod_{1}^{\infty}\left(1-q^{2 n}\right) ; \quad Q_{1}=\prod_{1}^{\infty}\left(1+q^{2 n}\right) ; \quad Q_{2}=\prod_{1}^{\infty}\left(1+q^{2 n-1}\right) \\
Q_{3}=\prod_{1}^{\infty}\left(1-q^{2 n-1}\right)
\end{gathered}
$$

then the following relations hold (Whittaker and Watson 1958):
$\theta_{2}=2 q^{1 / 4} Q_{0} Q_{1}^{2} ; \quad \theta_{3}=Q_{0} Q_{2}^{2} ; \quad \theta_{4}=Q_{0} Q_{3}^{2} ; \quad \theta_{1}^{\prime}=2 q^{1 / 4} Q_{0}^{3} . \quad($ A.1.1a-d)
It is elementary to show that

$$
\begin{gather*}
Q_{1} Q_{2} Q_{3}=1 ; \quad Q_{0} Q_{3}=Q_{0}\left(q^{1 / 2}\right) ; \quad Q_{1} Q_{2}=Q_{1}\left(q^{1 / 2}\right) \\
Q_{2} Q_{3}=Q_{3}\left(q^{2}\right) ; \quad Q_{0} Q_{1}=Q_{0}\left(q^{2}\right) \tag{A.1.2a-e}
\end{gather*}
$$

With these relations the identities (3.7) are easily verified. Properties of θ_{5} may be deduced from another identity, namely

$$
\begin{equation*}
Q_{0} / Q_{3}=1+q+q^{3}+q^{6}+q^{10} \ldots+q^{n(n+1) / 2} \ldots \tag{A.1.3}
\end{equation*}
$$

Put $-q^{2}$ for q in this series and multiply by $2 q^{1 / 4}$. Now since $Q_{0}\left(-q^{2}\right)=Q_{0}\left(q^{2}\right)$ and $Q_{3}\left(-q^{2}\right)=Q_{2}\left(q^{2}\right)$ we have

$$
\begin{equation*}
2 q^{1 / 4} Q_{0}\left(q^{2}\right) / Q_{2}\left(q^{2}\right)=2 q^{1 / 4}\left(1-q^{2}-q^{6}+q^{12}+q^{20} \ldots\right)=\theta_{5} \tag{A.1.4}
\end{equation*}
$$

Now from (A.1.1), $\theta_{2} \theta_{4}=2 q^{1 / 4} Q_{0}^{2} Q_{1}^{2} Q_{3}^{2}$ which, by multiplying top and bottom by Q_{2}^{2}, yields $\theta_{2} \theta_{4}=2 q^{1 / 4} Q_{0}^{2} / Q_{2}^{2}$. Putting q^{2} for q in this and multiplying by 2 we have

$$
\begin{equation*}
2 \theta_{2}\left(q^{2}\right) \theta_{4}\left(q^{2}\right)=4 q^{1 / 2} Q_{0}^{2}\left(q^{2}\right) / Q_{2}^{2}\left(q^{2}\right)=\theta_{5}^{2} \tag{A.1.5}
\end{equation*}
$$

thus verifying ($3.8 a$).
Again from (3.7e) we may write $\theta_{2}=\sqrt{ } 2 \theta_{2}\left(q^{2}\right) \theta_{3}\left(q^{2}\right)$, and since it has been shown that $\theta_{5}=\sqrt{ } 2 \theta_{2}\left(q^{2}\right) \theta_{4}\left(q^{2}\right)$ we have $\theta_{2} \theta_{5}=2 \theta_{2}\left(q^{2}\right) \sqrt{\theta_{3}\left(q^{2}\right) \theta_{4}\left(q^{2}\right) \text { which from (3.7d) gives }}$

$$
\begin{equation*}
\theta_{2} \theta_{5}=2 \theta_{2}\left(q^{2}\right) \theta_{4}\left(q^{4}\right) . \tag{A.1.6}
\end{equation*}
$$

Appendix 2. The evaluation of $N(2 s)-P(2 s)$

$$
\begin{equation*}
N(2 s)=\frac{1}{2}\left(\psi\left(0, \frac{1}{8}, \frac{1}{8}: 2 s\right)+\psi\left(\frac{1}{2}, \frac{3}{8}, \frac{3}{8}: 2 s\right)\right) . \tag{A.2.1}
\end{equation*}
$$

Writing this as Mellin-transformed θ-functions, this becomes

$$
\left.\begin{array}{rl}
N(2 s)=\frac{1}{2} & M_{s}
\end{array} \quad\left[\theta_{3}\left[\frac{1}{4}\left(\theta_{2}\left(q^{1 / 16}\right)+\theta_{5}\left(q^{1 / 16}\right)\right)\right]^{2}+\theta_{2}\left[\frac{1}{4}\left(\theta_{2}\left(q^{1 / 16}\right)-\theta_{5}\left(q^{1 / 16}\right)\right)\right]^{2}\right]\right] .
$$

Using (3.7) we have
$\theta_{3}\left(q^{16}\right)+\theta_{2}\left(q^{16}\right)=\theta_{3}\left(q^{4}\right)=\left(\theta_{3}+\theta_{4}\right) / 2 \quad$ and $\quad \theta_{3}\left(q^{16}\right)-\theta_{2}\left(q^{16}\right)=\theta_{4}\left(q^{4}\right) ;$
hence

$$
\begin{equation*}
N(2 s)=2^{4 s-6} M_{s}\left[\left(\theta_{3}+\theta_{4}\right)\left(\theta_{2}^{2}+\theta_{5}^{2}\right)\right]+2^{4 s-4} M_{s}\left[\theta_{2} \theta_{5} \theta_{4}\left(q^{4}\right)\right] . \tag{A.2.2}
\end{equation*}
$$

Now $\theta_{2} \theta_{5} \theta_{4}\left(q^{4}\right)=2 \theta_{2}\left(q^{2}\right) \theta_{4}\left(q^{4}\right) \theta_{4}\left(q^{4}\right)$ and since $\theta_{4}^{2}\left(q^{2}\right)=\theta_{3} \theta_{4}$ this becomes $2 \theta_{2}\left(q^{2}\right)$ $\theta_{3}\left(q^{2}\right) \theta_{4}\left(q^{2}\right)$; thus

$$
2^{4 s-4} M_{s}\left[\theta_{2} \theta_{5} \theta_{4}\left(q^{4}\right)\right]=2^{4 s-4} M_{s} 2 \theta_{2}\left(q^{2}\right) \theta_{3}\left(q^{2}\right) \theta_{4}\left(q^{2}\right)=2^{3 s-3} M_{s}\left[\theta_{2} \theta_{3} \theta_{4}\right]
$$

But $\theta_{2} \theta_{3} \theta_{4}=\theta_{1}^{\prime}$ and $M_{s}\left[\theta_{1}^{\prime}\right]=2^{2 s+1} \beta(2 s-1)$ (Zucker 1974), where

$$
\beta(s)=\sum_{0}^{\infty}(-1)^{n}(2 n+1)^{-s} .
$$

Thus finally

$$
\begin{equation*}
N(2 s)=2^{4 s-6} M_{s}\left[\left(\theta_{3}+\theta_{4}\right)\left(\theta_{2}^{2}+\theta_{5}^{2}\right)\right]+2^{5 s-2} \beta(2 s-1) . \tag{A.2.3}
\end{equation*}
$$

A similar analysis for $P(2 s)$ yields

$$
\begin{equation*}
P(2 s)=2^{4 s-6} M_{s}\left[\left(\theta_{3}+\theta_{4}\right)\left(\theta_{2}^{2}+\theta_{5}^{2}\right)\right]-2^{5 s-2} \beta(2 s-1) \tag{A.2.4}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
N(2 s)-\mathrm{P}(2 s)=2^{5 s-1} \beta(2 s-1) . \tag{A.2.5}
\end{equation*}
$$

For $s=\frac{1}{2}, N(1)-P(1)=2^{3 / 2} \beta(0)$ and since $\beta(0)=\frac{1}{2}$ (see Glasser 1973) it immediately follows that $N(1)-P(1)=2^{1 / 2}$. Sakamoto (1974) says he has proved this result but it is unpublished.

References

[^0]Naor P 1958 Z. Kristallogr. Kristallgeom. 110 112-26
Sakamoto Y 1953 Bull. Chem. Soc. Japan 26 283-8

- 1958 J. Chem. Phys. 28 164-5 Errata 733
—— 1974 J. Sci. Hiroshima Univ. 38 239-70
Takahasi U and Sakamoto Y 1960 J. Sci. Hiroshima Univ. 24 118-30
Templeton D H 1955 J. Chem. Phys. 23 1826-9
Tosi M P 1964 Solid St. Phys. 161
Waddington T C 1959 Adv. Inorg. Radiochem. 1157
Whittaker E J and Watson G N 1958 Modern Analysis (Cambridge: Cambridge University Press) chap 21
Zucker I J 1974 J. Phys. A: Math., Nucl. Gen. 7 1568-75

[^0]: Benson G C and Von Zeggeren F 1957 J. Chem. Phys. 261083
 Born M 1921 Z. Phys. 7 124-40
 Emersleben O 1923 Z. Phys. 24 73-80
 Fumi F G and Tosi M P 1957 Phil. Mag. 2284
 Glasser M L 1973 J. Math. Phys. 14 409-13
 Hoppe R 1956 Z. Anorg. Allg. Chem. 283 196-206
 Hund F 1925 Z. Phys. 34833

 - 1935 Z. Phys. 9411

 Lennard-Jones J E and Ingham A E 1925 Proc. R. Soc. A 107 636-49

