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Madelung constants and lattice sums for invariant cubic 
lattice complexes and certain tetragonal structures 

I J Zucker 
Department of Physics, University of Surrey, Guildford, Surrey, UK 

Received 23 June 1975 

Abstract. A method is given of evaluating Madelung constants for invariant cubic lattice 
complexes. It is shown that a linear combination of at most 8 lattice sums is sufficient to 
give the Madelung constant of all such lattices. In many cases this reduces to just 3 sums. 
The 8 sums suffice also to determine the Madelung constant for tetragonal lattices with 
axial ratio J2 or 2 and for orthorhombic lattices with lattice parameters in the ratio 1 : J 2  :2 .  
The method developed here is also applied to the evaluation of lattice sums arising from 
particles interacting with a general r-‘  potential. 

1. Introduction 

The evaluation of Madelung constants a has been the subject of many studies. The 
names of Born (1921), Emersleben (1923) and Hund (1925, 1935) are associated with 
certain general approaches to this problem. Review articles by Waddington (1959) 
and Tosi (1964) give many references. Recently Sakamoto in a considerable amount 
of published and unpublished work from 1953 onwards, eg Sakamoto (1953, 1974), 
has presented a comprehensive study of electrostatic energies in lattices. Unfortunately 
much that he has published as well as his unpublished work is not easily accessible 
and whether some results given here are to be found in his work is not easy to discover. 
All these investigations refer to electrostatic interactions between particles. The 
purpose of this work is to systematize Hund’s (1935) basic potential approach to the 
calculation of a and to generalize it to particles interacting with an I - ’  potential. In 
particular a prescription will be given for evaluating a and other lattice sums for all 
structures forming invariant cubic lattice complexes (ICLC). Naor (1 958), in discussing c1 

for ICLC, showed that 17 lattice sums of which only 9 were independent, were sufficient 
to calculate a for all ICLC. He conjectured that these 9 sums were not only sufficient 
but necessary. Here it will be shown that only 8 of these 9 sums are independent. In 
most cases only 5 of these sums are required and indeed for many cubic crystals found 
in nature just 3 numbers in various linear combinations are sufficient to give a. The 
method used here will also enable a to be evaluated for certain tetragonal crystals. 

2. The basic cubic potential of Hund and its generalization 

Cubic structures are composed of interpenetrating simple cubic lattices (sc), generally 
of different lattice constant. For ICLC these lattice constants will be the same. In an 
ICLC any lattice site may be taken as a fundamental origin (0, 0,O). The particle at 
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this site will interact with particles on the various sc sites whose origin lattice point 
with respect to (O,O, 0) has coordinates (x ,  y , z )  where x ,  y ,  z < f. Such a lattice is 
said to be based on ( x ,  y ,  z )  and designated sc(x, y,  z). If the particles interact with an 
r-‘ potential, the generalized Hund potential $(x,  y, z : 2s) is defined as the lattice sum 
obtained by summing the interaction of the fundamental origin particle with the 
particles on the sc based on ( x ,  y,  z). Thus 

m 

$ = $ ( x , y , z )  = $(x , y , z :2s )  = CCC [ ( n - ~ ) ~ + ( m - y ) ~ + ( p - z ) ~ ] - ~  
m,n,p= - m  

The sums are over all integer values of m, n, p .  $(O, 0,O) is known as the self-potential 
and in its evaluation the interaction of the (O,O,O) particle with itself is excluded, ie 
in (2.1) we exclude the term m = n = p = 0. Hund (1935) and Sakamoto (unpublished) 
discovered identities amongst $(x , y , z )  for varying x , y , z  and s = f. Here general 
relations for arbitrary s will be obtained. 

For ICLC, ( x ,  y ,  z )  can only take values which are multiples of i, and they must 
occur in certain combinations. Naor (1958) found these 17 possible combinations for 
cubic lattices and the related combination of Hund potentials. They are given in 
table 1. 

3. The representation of JI by &functions 

The modified Mellin transform M ,  is defined as follows : 

m 

r ( s ) M , [ f ]  = t””fdt. 
0 

It immediately follows that 

The transformed function is much simpler to handle since the triple sum in (2.1) is 
split into the product of three single sums. If (x, y ,  z )  are all multiples of a, $(x,  y ,  z )  
may be expressed in terms of well known Jacobian &functions. These, as defined by 
Whittaker and Watson (1958), are 
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In fact only 8, and 0, are required since 
CO m 

= 1. p- 1 / a 2  = 6 . = 0 :  qn2 = e,; 2 .  2 3  
- W  -00 

02 

= 1. C q ( n - 1 / 4 ) 2  = 16 (q1/4) .  
4 .  2 2  

-30 

To handle multiples of Q, an additional function 0, is required. This is given by 

(3.3) 

(3.5) m 

x = 3  8, q ( n - 3 / s ) 2  - - $(e2(q '1 6 ,  - 0, (4" ')). 
-if 

(3.3) and ( 3 . 5 )  together with the following property of Mellin transforms, 

Msf[4k1 = k-"M,f[ql, (3.6) 

allow all of Naor's combinations of $ to be written in the forms given in table 1 .  

found in standard textbooks are 
Now many identities hold amongst combinations of 02-05 .  Ones used here and 

e, + e4 = 2e3(q4); e, -e4 = 2e2(q4) ; 0, = o3(q4)+ e2(q4); 
(3.7a-f) 

0364 = 64(q I ?  26 2 ,g 3 - - 62 2 ( 4  1 /2  1, . el = e2e304. 2 2 .  

To these are added 

s: = 2e,(q2)e4(q2); 0205 = 2e2(q2)e4(q4). (3.8a, b) 

In appendix 1 some properties of 0 ,  are given and the results (3.8) deduced. The 
manipulation of these identities enables us to find relations amongst the $(x,y,z) .  
For example, $(O,O, 0) = M,[O: - 1 3 ,  but since 

6, = @,(q4)+ e2(q4), 

0 ~ 0 )  = ~ , [ ( e , ( q ~ )  + e2(q4))3 - 1 1  

= 2-2s($(0, 0,O) +3$(0, 0, f) + 3$(0, f, $1 + $Cf, f, 4)) 
or when s = f, 

$(O, 0,O : 1 )  = 3$(0,0,  f : 1 )  + 3$(0,f ,  f : 1 )  + $($, $, i: 1 )  (3.9) 
which is one of Hund's identities. Eventually all of Naor's (1958) 17 combinations can 
be reduced to combinations of the following 8 lattice sums. These are 

b = b(2s) = C ' ( - l ) " ( m 2 + n 2 + p 2 ) - S  = M,[8$04-1]  

c = c(2s) = C ' ( - l ) " + n ( m 2 + n 2 + p 2 ) - s  = ~ , [ e , e ~ - i ]  

d = 4 2 s )  = 1' ( -  l)m+n+p(m2 + n 2  + p 2 ) - ,  = M,[0: - 1 3  

e = 4 2 s )  = C ( - l ) " [ m 2 + ( n - 3 ) 2 + ( p - + ) 2 ] - S  = ~ , [ e , e ; ]  
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f= f (2s )  = C ( - l ) m + n [ m 2 + n 2 + ( p - + ) 2 ] - s  = M s e 3 2 1  (3.10b-j) 

g = g ( 2 ~ )  = 8 C ( - i ) m + n + ~ [ ( 2 m - + ) 2 + ( 2 n - f ) 2 + ( 2 p - + ) 2 ] - S  = ~ ~ [ e ; ]  
h = 42s) = 4 C ( - i ) " + ~ [ m ~ + ( 2 m - ) ) ~ + ( 2 p - ; ) ~ ] - ~  = ~,[e,o:] 
j = j (2s )  = 4 C ( - l ) m + n + p [ m 2 + ( 2 n - t ) 2 + ( 2 p - f ) 2 ] - S  = M se,o:1. 

For convenience we append the self-potential sum 

a = 42s) = ~ ' ( m ~ + n 2 + p ~ ) - s  = M,[e;-11 (3 .10~)  

but this is expressible in terms of b, c and d. These sums have been tabulated in table 4 
for s = #) 8 to 10 decimal places. In (3.10) all the sums are over all integer values of 
m, n, p ,  except (3.10~-d) in which the case m = n = p = 0 is excluded. All the sums 
except 4 2 s )  converge for s > 0. 42s) has a simple pole at s = 3 but just as the function 
((s) represented by the sum Xy n-' for s > 0 has a simple pole at s = 0, yet is easily 
defined for s < 0, so there is no difficulty in defining 42s) for s < $. For 

4 2 4  = Ms[e :  - 13 = ~ , [ [ ; ( e , ( p ~ ) +  e,(41'4))]3 - 11 

- - 22s- 3 ~ , [ e :  + 3e:e, + 348,  + e: - 81. 

Therefore 

42s)  = 22"3(a(2s)+ 3b(2~)+3~(2s)+d(2s)) 

and in particular 

U( 1 )  = b( 1)  + c(1) +&( 1). (3.1 1 )  

Since all the sums on the right-hand side of (3.11) converge for s > 0, a(1) may be 
evaluated. In a similar way all of Naor's (1958) grouping may be evaluated in terms of 
(3.10~-j). The results are given in table 1 for general s together with values for s = 
in terms of b( 1 )  - j (  1). In appendix 2 we give in detail the evaluation of N and P. Naor 
(1958) thought them to be independent, but in appendix 2 it is shown that they differ 
by a constant which for s = 3 is equal to 2'12. 

In many ICLC the sc based on (x, y, z), (x, y++,  z++),(x++, y, z++) and(x+i ,  y + f ,  z) 
are often simultaneously occupied by the same particle. These four sc form the face- 
centred cubic (FCC) structure, and when this occurs we have an FCC lattice based on 
(x, y, z )  or FCC (x, y, 2).  Knowledge of the potentials for such groups facilitates many 
calculations, and in table 2 the potentials for FCC (x, y, z )  based on a few selected lattice 
sites have been given. It will be observed in both tables 1 and 2 that if (x, y, z )  are either 

Table 2. FCC potentials. 

Lattice base Values for general s Value for s = + 
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0 or $ or all $ then only three independent constants, which we will choose to be b, c 
and d,  are required to specify lattice sums. The majority of ionic crystals usually met 
with fall into these categories. 

4. Prescription for evaluating Madelung constants 

To find a for a given crystal, the total Hund potential for every ion making up the 
neutral complex in the crystal must be evaluated. The number of charges and the sign 
of the ions interacting have to be taken into account. The sum of all the Hund potentials 
divided by 2 then gives a. The following examples of increasing complexity illustrate 
the method. 

(i) Na'C1- 

Na' at (O,O, 0) + Na' = ~cc(0, 0,O); c1- = FCC($, $,f). 
$(Na+) = u(l)+d(l)-(u(1)-d(1)) = 241) 

C1- at (0, 0,O) 3 C1- = FCC(O, 0,O) ; Na+ = FCC($, $, 3). 
$(cl-) = u(l)+d(l)-(u(1)-41)) = 241). 

r(Na'Cl-) = $($(Na+)+$(Cl-)) = 241). 
Therefore 

(4.1) 
(ii) Ca2+F; 

CaZ + at (O,O, 0) 4 Ca2 + = FCC(O, 0,O); F- = FCC(t, *,a); F- = FCC(i, i, 2) 
$(Ca2+) = ~ ( u ( ~ ) + d ( ~ ) ) - ( ~ c ( ~ ) - u ( ~ ) ) - ( ~ c ( ~ ) - u ( ~ ) )  

F- at (O,O, 0) + F- = FCC(O, 0,O); F- = Fee(-$, i, 5);  Ca2 + = F C C ( ~ ,  +, $) 

$(F - ) = U( 1) + d( 1 ) + U( 1) - d( 1) - ( 3 ~ (  1 ) - U( 1 )). 
Therefore 

a (Caz+Fi)  = $($(Caz+) +2$(F-)) = 6u(l) - 6c(l)+2d(l) = 6b(l) +4d(l). (4.2) 
(iii) Perovskites : general formula A" 'B3"-"Xn3- 

A"' at (O,O, 0) --+ A"' = sc(0, 0,O); 

3xn-  = SC(& 3, O), (O,$, $), ($, O,$). 

0 3 " - m  = sc(f, 5, 4) 

$(A"+) = m2a(l)+m(3n -m)(3c(l) - a(1))/2 - mnd(1). 

at (0, 0,O) + B3n-m = sc(O,O, 0) ~ 3 n - m  

3x"- = sc(0, 0, $), (O,f, O), (i, 0,O) 

A"'+ = S C ( ~ ,  f, )). 
$(B3"-") = (3n -m)'a(l)-n(3n --m)(3b(i)-d(i))p +m(3n --m)(3~(1)-~(1))/2. 

X"- at (0, 0,O) -, X"- = sc(0, 0,O); 2xn-  = sc(0, f, f), ($,O, f) 
A"' = se(+, f, 0); 

$(Xn-) = n2u(l)+2n2d(l)/3 -mnd(l)/3 -n(3n -m)(3b(l)-c(l))/2. 

B3"+" = SC(O, 0, f). 
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a(Am+B3"-"X;-) = $($(A"+) + $(B3"-")+ 3$(X-)). 

After some algebra we have 

a(Am+B3"-"X;-) = $[3(n--m)'b(l)+ 12n2c(l)+(3n-m)2d(l)]. (4.3) 
For example, for 

Ba2 + Ti4 + 0 2  - , n = m = 2 .  

Therefore 

a(BaTi0,) = 244 1) + 8 4  1). 

Sakamoto (1958) has given a formula similar to (4.3) but in terms of the Born (1921) 
potentials ll. In table 5 a short list is given of a for some ionic crystals in terms of b(l), 
c(1) and d(1) only. The numerical values given are all in terms of the basic cube side. 
The various linear relations discovered amongst a for various ionic crystals by several 
authors such as Fumi and Tosi (1957), Benson and Zeggeren (1957), Templeton (1955) 
and several others are easily deduced from table 5. Sakamoto (1958) gives a similar 
tabulation but in terms of Born potentials. Takahasi and Sakamoto (1960) show how 
to convert from ll to $ and vice versa. They also tabulate numerical values of $(x, y, z : 1) 
accurate to at least four decimal places for all values of x, y ,  z in multiples of from 
zero to 4. There are 455 such terms many of which will be interdependent, but no 
systematic study of these relations has been carried out. From their table, a for quasi- 
cubic lattices of moderate complexity may be evaluated. 

5. Tetragonal structures and other lattice sums 

Tetragonal structures have a square base but a variable third lattice parameter. The 
ratio of this to that of one of the base lattice parameters is called the axial ratio (AR). 
If AR takes either the value 42 or 2 the potentials involved in their 8-function represent- 
ation will contain 8-functions of arguments q2 and q'. By manipulation of relations (3.7) 
and (3.8) all such potentials may be expressed in terms of a(2s)--42s) if x, y,  z are zero or f. 
All such tetragonal potentials have been listed in table 3. A calculation was carried 

Table3. Tetragonal potentials: k = 2 2 s - 3 ;  I = 2"' 
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out for the structure A'B-, with A +  = sc(0, 0,O) and B -  = sc(3, 3, 0) of which CaWO, 
is a physical example. This structure was considered by Hoppe (1956). For the three 
cases of AR = 1, J2 and 2, the results obtained here were 

AR = 1 

A R =  J2 

a(A+B-)  = b ( l ) + ~ ( l )  = 2.254776 (1.594367) 

N(A+B-)  = 2-1'2(~(1)+d(1)) = 2.282508 (1.613977) 

AR = 2 a(A+B-)  = (2b(l)+c(l)-e(1))/2 = 2.284666 (1.615503). (5.1) 

The figures in brackets are the values of a given in terms of the closest anion-cation 
distance. The first two agree with the values given by Hoppe (1956), but he estimated 
the value for AR = 2 by extrapolation to be approximately 1.623. It is seen here that 
it can be directly calculated and is smaller than Hoppe's value. Orthorhombic lattices 
with lattice parameters in the ratio 1 : J2:2 can also have all their potentials written 
in terms of a(2s)-j(2s) for x, y ,  z either zero or +, but there appears to be no physical 
example of such an ionic crystal. 

There is no difficulty in using table 1 to evaluate other lattice sums. For example 
the sums found by Lennard-Jones and Ingham (1925) for r-' potentials for the sc, 
BCC and FCC lattices made up of one kind of particle, are easily expressed in terms of 
42s) etc. Thus 

sc(2s) = 42s); BCC(2S) = Z2'- ' ( 4 2 s )  4- 3 ~ ( 2 ~ ) ) ;  ~cc (2s )  = 22s-1(a(2s)+d(2s)). 

Other lattice sums may be written in terms of a(2s)-j(2s) or in terms of the cubic lattice 
sums just given. For example, the diamond (D) lattice is represented by FCC(O, 0,O) 
plus FCC($, 4, i). From table 2 it can immediately be shown that 

D(2s) = 22'- ' (a  + d )  + 24"4(a - 3b+ 3c - d) .  (5.2) 

Table 4. Lattice sums: N x 10" where n is figure in brackets 

~~~ ~ ~ 

0.5 - 2,83729 74794 (0) - 7.74386 14142 ( -  1) - 1,48038 98065 (0) 
1 .o - 1,83004 53641 (0) 
1.5 CO 2,22287 10876 ( -  1) - 2.0461 9 36439 (0) 
2.0 1.65323 1596 (1) 6.89222 57409 ( -  1) - 2.1 5688 72986 (0) 
2.5 1.03775 2483 (1) 1.06198 23625 (0) -2.19682 98536 (0) 
3.0 840192 0546 (0) 1.341 10 86694 (0) -2.19552 19241 (0) 
3.5 746705 7780 (0) 1.54220 45834 (0) -2.17385 03493 (0) 
4.0 6,94580 7926 (0) 1.68375 14910 (0) -2.14481 33764 (0) 
4.5 6.62885 9200 (0) 1,78204 45621 (0) - 2.1 1558 44408 (0) 
5.0 6.4261 1 9101 (0) 1,84981 05369 (0) - 2.08956 01364 (0) 
5.5 6.29229 4498 (0) 1.89638 45503 (0) - 2.06792 79901 (0) 
6.0 6.20214 9043 (0) 1,92837 73751 (0) - 2.05071 32697 (0) 
6.5 6.14059 9581 (0) 1.95037 80885 (0) - 2.03741 37084 (0) 
7.0 6.09818 4126 (0) 1.96553 80752 (0) -2,02735 27819 (0) 
7.5 6.06876 4295 (0) 1,97601 03762 (0) -2.01985 80752 (0) 
8.0 6.04826 3469 (0) 1.98326 37191 (0) -2.01433 88512 (0) 

- 8.91 363 291 7 (0) -3.01380 2247 ( -  1)  
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Table 4.--continued 

0.5 
1 .o 
1 .5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

- 1.74756 45946 (0) 
-2,51935 61521 (0) 
- 3.23862 47661 (0) 
- 3.86316 38072 (0) 
- 4.37860 11499 (0) 
-4.78844 37139 (0) 
- 5.10542 93720 (0) 
- 5.34556 57733 (0) 
- 5,52466 36380 (0) 
- 5.65666 62484 (0) 
- 5.75308 49044 (0) 
- 5.82302 77889 (0) 
- 5,87349 60409 (0) 
- 5,90976 23766 (0) 
- 5.93573 95661 (0) 
- 5.95429 97599 (0) 

1.54017 09012 (0) 
4.14586 742 19 (0) 
7.89370 4872 (0) 
1.30547 52185 (1) 
2.01326 91063 (1) 
2.99064 94892 (1) 
4.35078 44901 (1) 
6.25476 65025 (1) 
8.93057 52590 (1) 
1.27004 38916 (2) 
1,80197 68497 (2) 
2.55323 13378 (2) 
3.61481 94853 (2) 
5.1 1542 70695 (2) 
7.23702 14795 (2) 
1.02369 24529 (3) 

1,31967 05870 (0) 
4.83858 95905 (0) 
1.25682 51129 (1) 
2.84777 47226 (1) 
6.05220 64903 (1) 
1.24657 84291 (2) 
2,52849 72479 (2) 
5.09071 47682 (2) 
1.02130 48420 (3) 
2.04553 77585 (3) 
4.09376 26666 (3) 
8.18997 51417(3) 
1.63821 72875 (4) 
3.27663 54948 (4) 
6.55345 21329 (4) 
1,31070 67253 (5) 

0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

2,53355 74044 (0) 
5.62814 94825 (0) 
8.78504 00797 (0) 
1.18570 62518 (1) 
1.48859 26393 (1) 
1.79851 64284 (1) 
2.12830 71340 (1) 
2.49028 98412 (1) 
249604 08839 (1) 
3.35677 95759 (1) 
3.88391 24460 (1) 
4.48956 02845 (1) 
5,18703 17651 (1) 
5.99125 50183 (1) 
6.91919 09161 (1) 
7.99025 18812 (1) 

3,63498 9014 (0) 
7.72948 90464 (0) 
1,21638 47976 (1) 
1.74144 40838 (1) 
2.42350 87473 (1) 
3.35884 28415 (1) 
4.67175 92062 (1) 
6.52937 08145 (1) 
9.16256 07686 (1) 
1.28947 06095 (2) 
1.81814 30446(2) 
2,56662 25287 (2) 
3.62587 41613 (2) 
5.12452 94757 (2) 
7.24450 17880 (2) 
1,02430 62668 (3) 

1.28584 65498 (0) 
3.68988 29776 (0) 
7.34798 76218 (0) 
1.25172 26760 (1) 
1.96621 59451 (1) 
2.95258 97876 (1) 
4,32167 38240 (1) 
6.23339 52840 (1) 
8.91536 18774 (1) 
1.26898 61363 (2) 
1,80125 47440 (2) 
2.55274 54010 (2) 
3.61449 61780 (2) 
5.1 1521 39126 (2) 
7.23688 19704 (2) 
1.02368 33762 (3) 

Table 5. a for some ionic crystals 

NaCl 
CSCl 
ZnS 
CaF, 
c u , o  
KZnF, 
LaAIO, 
Reo, 
BaTiO, 
NaTaO, 
ScF, 
YOF 
BiF, 
BaLiF, 

3 

5 
6 
3 3 

6 
t 24 
6 24 

24 

6 
t 6 

2 3.49512 919 
t 2.03536 151 : 3.78292 6104 
4 11,63657 5227 
2 10.25945 7033 
2 12.37746 803 
B 44.55497 524 
18 71,63183 526 
8 49,50987 213 

58.53549 203 
17,90795 873 

9 27.05607 657 
10 22.12196 279 
t 10.917700035 

Y 
9 
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Using the result that 42s )  = 22”3(u+3b+3c+d), (5.2) may be rewritten in a number 
of ways of which the following are particularly simple : 

D(2S) = FCC(2.S) + 2’‘- ‘(BCC(2S) - SC(2S)) = 22s- ‘(BCC(2S) 42s)). (5.3) 

Similar formulae can be obtained for other lattices. 
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Appendix 1. Some properties of 8, 

Though the &functions have been most useful here expressed as infinite series it is 
often simpler to find many of their interrelated properties by using their representations 
as infinite products. If in the usual notation 

m 
Q3 = n (1 -q2”-  ’) 

1 

then the following relations hold (Whittaker and Watson 1958): 

8, = 2q1l4QoQ:; 03 = QoQ: ; 84 = QoQ:; 8; = 2q”4Qi. (A.l.la-d) 

It is elementary to show that 

With these relations the identities (3.7) are easily verified. Properties of O 5  may be 
deduced from another identity, namely 

(A.1.3) 

Put - q2 for q in this series and multiply by 2 p 4 .  Now since Qo( - q2)  = Qo(q2) and 

2q1’*Qo(q2)/Q2(q2) = 2q1’4(l - q2 - q6 + q” + qzo . . .) = 0, .  (A.1.4) 

Now from (A.l.l), 8,8, = 2q”4QiQtQ: which, by multiplying top and bottom by Q:, 
yields 0204 = 2q’’4Qi/Qi. Putting q2 for q in this and multiplying by 2 we have 

(A.1.5) 

thus verifying (3.8~) .  
Again from (3.7e) we may write 0, = J28,(q2)0,(q2), and since it has been shown 

that 0, = J2B2(q2)e4(q2) we have 0205 = 282(qz)J03(q2)e4(q2) which from (3.7d) gives 

6265 = 282(q2)@4(q4). (A.1.6) 

Qo/Q3 = 1 + q + q 3 + q 6 + q  l o . . .  +qn(n+1)’2 . . . .  

Q3(-q2) = Q2(q2) we have 

20Aq2)04(q2) = 4q”2Qi(q2)/Q:(q2) = 0: 
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(A.2.1) 

03(416)+ 02(416) = 03(q4) = ( 6 3  + 84)P and e3(q'6)-e2(q16) = e4(q4); 

hence 

N(2s) = 24s-6M s[(e3 +e4)@: + e : ) 1 + 2 ~ ~ - - ~  ,[e2 e 5 e4(q4)1. (A.2.2) 

Now O2O5e4(q4) = 2B2(q2)O4(q4)e4(q4) and since e&2) = e304 this becomes 2Q2(q2) 
e3(q2)e4(q2); thus 

24s-4Ms[028584(q4)] = 2 4 s - 4 ~ s 2 e 2 ( ~ 2 ) e 3 ( ~ 2 ) e 4 ( ~ 2 )  = 23s-3~s[e2e3e,]. 

But B2B3B4 = el and Ms[@l] = 22s+1fi(2s- 1) (Zucker 1974), where 
io 

P ( s )  = c ( -  1)"(2n + 
0 

Thus finally 

~ ( 2 s )  = 24s -6~S[ (e3  + e4)(e: + e:)] +25~-2p(2s- 1). (A.2.3) 

A similar analysis for P(2s) yields 

~ ( 2 s )  = z 4 s - 6 ~ ~ [ ( e 3  + e4)(e; +e:)] - 25~- -28(2~  - 1). (A.2.4) 

Therefore 

~ ( 2 s )  - ~ ( 2 s )  = 2 5s-  ' ~ ( 2 s  - 1). (A.2.5) 

For s = 4, N(I)-P(l) = 23'2/?(0) and since B(0) = 4 (see Glasser 1973) it immediately 
follows that N(l)-P(l)  = 21/2. Sakamoto (1974) says he has proved this result but it 
is unpublished. 
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